Timothy Trippel

Website: https://timothytrippel.com

Education

2015-2021	University of Michigan , Ph.D., Computer Science Advisor: Prof. Kang G. Shin
2015 - 2016	University of Michigan, M.S.E., Computer Science
2011 - 2015	Purdue University, B.S., Computer Engineering

Research Summary

My experience / interests lie at the intersection of hardware and software co-design, computer architecture, and embedded systems. I have experience in embedded systems software development, IC design (from development to tapeout and bringup), IC provisioning, pre/post-silicon verification, secure elements, and fuzzing. I have a background in low-level security research, where I have published several top-tier conferences papers (e.g., USENIX, Oakland, CHES). I am a top-5 contributor to the open-source OpenTitan project.

Professional Experience

June 2021–	Senior Software Engineer	Google, LLC, Mountain View, CA		
Present	ChromeOS	Managers: Miguel Osorio		
	 OpenTitan core contributor where I developed firmware, Cl DV tests, and bring-up tooling. Was part of core team that #1 overall software individual contributor to the O Led the silicon bring-up and provisioning workstreat Developed a FreeRTOS-based pre-silicon verification Led the development of 30+ device drivers for Open Stood up Xilinx-based FPGA boards to emulate Op Migrated most of the OpenTitan code base from M Maintain cloud-based RTL simulation infrastructure Recruited / Led Ph.D. research intern to develop a result 	C/CD and provisioning infrastructure, pre- and post-silicon at delivered the first tapeout of OpenTitan silicon. penTitan project. ms for the first OpenTitan silicon tapeout. In test framework for the OpenTitan chip. In the pre-silicon verification. DenTitan pre-silicon verification. DenTitan hardware for software development purposes. eson to Bazel (build systems). e for 50k+ OpenTitan nightly simulation jobs. Howel firmware fuzzing technique to fuzz OpenTitan ROM.		
Sept. 2015–	Ph.D. Candidate	University of Michigan , Ann Arbor, MI		
May 2021	Computer Science & Engineering	Advisor: Kang G. Shin		
	See Dissertations in Publications section below.			
Summer	Research Intern	Google, Cambridge, MA		
2020	OpenTitan	Supervisors: Alex Chernyakhovsky & Garret Kelly		
	Developed a <i>hardware fuzzing</i> pipeline to fuzz software traditional design verification efforts across the OpenTitar codebase and submitted technical paper for publication in	models of RTL hardware to complement and accelerate a hardware ecosystem. Additionally, open-sourced project an academic conference.		
Summer	Graduate Research Intern	MIT Lincoln Laboratory, Lexington, MA		
2019	Cyber-Physical Systems	Supervisors: Kevin B. Bush & Matthew Hicks		
	Developed a design-time dynamic verification technique t Additionally, open-sourced project codebase and submitted	o verify hardware is free of Ticking Timebomb Trojans. technical paper for publication in an academic conference.		
Summer	Graduate Research Intern	MIT Lincoln Laboratory, Lexington, MA		
2018	Cyber-Physical Systems	Supervisors: Kevin B. Bush & Matthew Hicks		
	Developed techniques to protect the integrity of integrate manufacturing them at untrusted foundries. Fabricated p Additionally, filed two patents, and submitted technical pa	ed circuit layouts to fabrication-time attacks enabled by prototype hardware on in-house 90 nm rad-hard process. uper for publication in an academic conference.		
Summer	Graduate Research Intern	MIT Lincoln Laboratory, Lexington, MA		
2017	Cyber-Physical Systems	Supervisors: Kevin B. Bush & Matthew Hicks		

Developed tools to measure the susceptibility of integrated circuit layouts to fabrication-time attacks enabled by manufacturing them at untrusted foundries. Additionally, open-sourced project codebase and submitted technical paper for publication in an academic conference.

Summer	Software Engineering Intern	Microsoft, Bellevue, WA	
2015	Windows & Devices Group	Supervisor: Ted Roberts	
	Worked on the Windows IoT Core team to design and deve and Windows 10.	elop point-of-sale (PoS) device emulators for Visual Studio	
Summer	Software Engineering Intern	Microsoft, Redmond, WA	
2014	Operating Systems Group	Supervisor: Mike Dice	
	Worked on the Membership Assistance and Connections team to design and develop a web UX customer support feature for Windows 10, and its supporting back-end.		
Jan. 2014–	Undergraduate Researcher	Purdue University, West Lafayette, IN	
Apr. 2015	Electrical & Computer Engineering	Advisor: Prof. Cheng-Kok Koh	
	Developed place-and-route algorithms, used by VLSI CAD	tools, to automate and optimize integrated circuit layout.	
Summer	EID Software Engineering Intern	GE Healthcare , Barrington, IL	
2013		Supervisor: Anand Desikan	
	Developed a software life-cycle reporting tool, for use by a	agile scrum teams, to automate the production of Design	

History Files required to meet FDA healthcare software regulations. Developed a Python back-end to parse Agile process artifacts, test requirements, and results, that were dumped into a custom internal facing web UX.

Publications

Refereed

- Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. "T-TER: Defeating A2 Trojans with Targeted Tamper-Evident Routing". ACM Asia Conference on Computer and Communications Security (AsiaCCS), July 2023. Acceptance rate: TBD. A routing-centric preventive defense against stealthy analog hardware Trojans like A2.
- [2] Pascal Nasahl, Miguel Osorio, Pirmin Vogel, Michael Schaffner, Timothy Trippel, Dominic Rizzo, and Stefan Mangard. "SYNFI: Pre-Silicon Fault Analysis of an Open-Source Secure Element". IACR Transactions on Cryptographic Hardware and Embedded Systems (CHES), September 2022. Acceptance rate: 38%. A pre-silicon formal verification tool to evaluate fault-injection countermeasures in a secure IC.
- [3] **Timothy Trippel**, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly, Dominic Rizzo, and Matthew Hicks. "Fuzzing Hardware Like Software". **USENIX Security Symposium**, August 2022. Acceptance rate: 17.2%. *Adapting coverage-guided greybox software fuzzers for dynamic verification of RTL hardware.*
- [4] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. "Bomberman: Defining and Defeating Hardware Ticking Timebombs at Design-time". IEEE Symposium on Security and Privacy (Oakland), May 2021. Acceptance rate: 12.08%. A dynamic verification technique for eradicating the threat of Ticking-Timebomb Trojans in RTL hardware.
- [5] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. "ICAS: an Extensible Framework for Estimating the Susceptibility of IC Layouts to Additive Trojans". IEEE Symposium on Security and Privacy (Oakland), May 2020. Acceptance rate: 12.3%. An extensible framework for estimating the vulnerability of IC layouts to fabrication-time Trojaning attacks.
- [6] Timothy Trippel, Ofir Weisse, Wenyuan Xu, Peter Honeyman, and Kevin Fu. "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks". IEEE European Symposium on Security and Privacy (EuroS&P), April 2017. Acceptance rate: 19.6%. First to demonstrate full control over output signals of MEMS sensors with targeted acoustic interference.

2

Non-refereed

[1] **Timothy Trippel**, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. "An Extensible Framework for Quantifying the Coverage of Defenses Against Untrusted Foundries". arXiv, abs/1906.08836, May 2019. *Quantifiable metrics for evaluating the security of integrated circuit layouts.*

Dissertations

[1] Timothy Trippel "Developing Trustworthy Hardware with Security-Driven Design & Verification". Ph.D. Dissertation, University of Michigan, May 2021.
 From design to deployment, my dissertation research developed automated techniques (i.e., fuzzing and EDA tools) to rigorously evaluate hardware designs for the presence of intentional (e.g., Trojans) and unintentional (e.g., bugs) flaws capable of compromising application security.

Patents

- Kevin B. Bush, Matthew D. Hicks, and Timothy D. Trippel. "Integrated Circuit (IC) Portholes and Related Techniques". U.S. Patent No. 10,839,109. Issue Date: Nov. 17th, 2020. Integrated circuit layout designs for enhancing post-fabrication imaging of security-critical interconnects.
- [2] Kevin Fu, Peter Honeyman, Timothy Trippel, and Ofir Weisse. "Protecting Motion Sensors from Acoustic Injection Attack". US Patent No. 11,209,454. Issue Date: Dec. 28th, 2021. Signal filtering mechanisms for coping with periodic interference in motion sensors.
- [3] Kevin B. Bush, Matthew D. Hicks, and Timothy D. Trippel. "Defensive Routing and Related Techniques". US Patent No. 11,347,902. Issue Date: May 31st, 2022. Integrated circuit routing techniques for hardening interconnects against fabrication-time modifications.

Awards and Honors

- [1] R&D 100 Award Winner in IT/Electrical for Defensive Wire Routing for Untrusted IC Fabrication (2020)
- [2] National Science Foundation Graduate Research Fellowship (2017)
- [3] Top 10 and Twilio Challenge Award at BoilerMake Hackathon (2014)
- [4] Donald C. and Marion E. Currier Scholarship (Purdue University, Full Tuition)
- [5] Purdue University Dean's List (8/8 Semesters)
- [6] Purdue University Semester Honors (7/8 Semesters)
- [7] Indiana's Top Young Scientist (2011)
- [8] Intel International Science and Engineering Fair Second Place (2011)
 Minor Planet named after me by MIT Lincoln Laboratory LINEAR
 URL: https://ssd.jpl.nasa.gov/sbdb.cgi#top (search "Timtrippel")
- [9] National Junior Science and Humanities Symposium Second Place (2010)

Teaching Experience

2014	Teaching Assistant Microprocessor Systems & Interfacing (ECE 362)	Purdue University, West Lafayette, IN
2013	Teaching Assistant Introduction to Digital System Design (ECE 270)	Purdue University, West Lafayette, IN

Selected Talks & Presentations

[1] Talk "Fuzzing Hardware Like Software". 31st USENIX Security Symposium, Boston, MA. August, 2022.

[2] Talk "Bomberman: Defining and Defeating Hardware Ticking Timebombs at Design-time". 42nd IEEE Symposium on Security & Privacy (**Oakland**), San Francisco, CA. May, 2021.

- [3] Talk "ICAS: an Extensible Framework for Estimating the Susceptibility of IC Layouts to Additive Trojans". 41st IEEE Symposium on Security & Privacy (**Oakland**), San Francisco, CA. May, 2020.
- [4] Talk "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks".
 2nd IEEE European Symposium on Security & Privacy (EuroS&P), Paris, France. April, 2017.
- [5] Talk "Waging Doubts on the Integrity of MEMS Accelerometers with Acoustic Attacks". THaW Annual Review, Vanderbilt University, Nashville, TN. September, 2016.
- [6] Poster "HeartBeats: A study of acoustic injection attacks on medical devices". THaW Annual Review, Johns Hopkins University, Baltimore, MD. January, 2016.

Tutorials

- [1] "Why Do You Trust Sensors? Analog Cybersecurity Attack Demos". IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA. April, 2017.
- [2] "Acoustic Injection Attacks on MEMS Accelerometers". Analog Devices Inc. Annual Executives Meeting, Boston, MA. January, 2016.

Press

[1]	NewScientist	February2021.Virtual computer chip tests expose flaws and protectagainst hackers.Retrieved from https://www.newscientist.com/article/
[2]	MIT News	2269263-virtual-computer-chip-tests-expose-flaws-and-protect-against-hackers/October 2020.Eight Lincoln Laboratory technologies named 2020 R&D100Award winners.Retrieved from https://news.mit.edu/2020/
[3]	New York Times	lincoln-laboratory-technologies-rd-100-award-winners-1020 March 2017. It's Possible to Hack a Phone With Sound Waves, Researchers Show. Retrieved from https://www.nytimes.com/2017/03/14/technology/
[4]	CNBC	phone-hacking-sound-waves.html April 2017. <i>Hacking with sound waves</i> . Retrieved from https://www.cnbc.com/video/ 2017/04/27/hacking-with-sound-waves.html
[5]	University of Michigan News	March2017.SonicCyberAttacksShowSecurityHolesinUbiquitousSensors.Retrievedfromhttps://news.umich.edu/
[6]	EE Journal	sonic-cyber-attack-shows-security-holes-in-ubiquitous-sensors-2/ April 2017. Cracking a WALNUT A Novel Physical Attack on Accelerometers. Retrieved from https://www.eejournal.com/article/20170417-walnut/
[7]	IEEE Spectrum	March2017.SmartphoneAccelerometersCanBeFooledbySoundWaves.Retrievedfromhttps://spectrum.ieee.org/tech-talk/telecom/security/
[8]	Science Friday	<pre>smartphone-accelerometers-can-be-fooled-by-sound-waves March 2017. Hacking Via Sound. Retrieved from https://www.sciencefriday.com/ segments/a-proposed-science-budget-backing-via-sound-and-a-fluorescent-frog/</pre>
[9]	IFL Science	March 2017. Sound Waves Can Now Be Used To Hack Into Smartphones. Retrieved from https://www.iflscience.com/technology/sound-waves-used-hack-smartphones/
[10]	Gizmodo	March2017.HackersCanNowUseSoundWavestoTakeCon-trolofYourSmartphone.Retrievedfromhttps://gizmodo.com/
[11]	Fortune	hackers-can-now-use-sound-waves-to-take-control-of-your-1793259066March 2017.You Can Hack Fitbits and Smart Phones Using Sound,Researchers Say.Retrieved from https://fortune.com/2017/03/14/
[12]	CNET	hack-fitbit-smart-phones-using-sound/ March 2017. These researchers can hack your phone with sound waves. Retrieved from https://www.cnet.com/news/hack-fitbit-samsung-sound-waves-researchers/
[13]	Tom's Hardware	March 2017. 'Walnut' Attack Uses Sound To Trick Sensors In Cars, Phones, And Other Devices. Retrieved from https://www.tomshardware.com/news/
[14]	The Register	<pre>walnut-sound-trick-sensors-cars-phones,33901.html March 2017. Boffins Rickroll smartphone by tickling its accelerometer. Retrieved from https://www.theregister.co.uk/2017/03/15/boffins_rickroll_smartphone_by_</pre>
[15]	Engineering.com	March 2017. Hacking Sensors with Sound Waves. Retrieved from https://www.engineering.com/story/hacking-sensors-with-sound-waves

[16] Hacker News March 2017. WALNUT Attack on MEMS Accelerometers. Retrieved from https://news. ycombinator.com/item?id=13881167

Relevant Technical Coursework

Graduate: Computer & Network Security, Micro-architecture, Artificial Intelligence, Machine Learning, Advanced Networking, Advanced Operating Systems

Undergraduate: Computer Architecture, Signals and Systems, Data Structures and Algorithms, Operating Systems, Embedded Systems Senior Design, Computer & Network Security, Microprocessor System Design, Digital Systems Design

Languages

Proficient: C/C++, Python, Bash, LATEX Familiar: (System)Verilog, Starlark, MATLAB, Java, C#, JavaScript, HTML/CSS

Platforms/Architectures

Proficient: Linux, Docker, RISC-V **Familiar:** FreeRTOS, MacOS

Cloud Platforms/Tools

Proficient: GCP (Compute Engine, Cloud Storage, Cloud Build) **Familiar:** Azure (Pipelines), AWS (Route 53, EC2, S3, CodePipeline)

Software Tools

Proficient: Vim, Git, Bazel, Make, GDB, AFL++, Seaborn/Matplotlib, Pandas **Familiar:** LLVM, NumPy, pytest, PyPy, kcov, OpenOCD, Jupyter/Colab

Hardware Design Tools

Proficient: Verilator, Icarus Verilog, GTKWave Familiar: Vivado, FuseSoC, cocotb, Synopsys VCS, Xcelium, Innovus, Genus, Virtuoso, Calibre nmDRC

Hardware Tools/Protocols

Tools: Ocilloscope, Logic Analyzer, Multimeter, Function Generator **Protocols:** UART, SPI, I2C, JTAG