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Abstract—Cyber-physical systems depend on sensors to make
automated decisions. Resonant acoustic injection attacks are al-
ready known to cause malfunctions by disabling MEMS-based
gyroscopes. However, an open question remains on how to move
beyond denial of service attacks to achieve full adversarial
control of sensor outputs. Our work investigates how analog
acoustic injection attacks can damage the digital integrity of a
popular type of sensor: the capacitive MEMS accelerometer.
Spoofing such sensors with intentional acoustic interference
enables an out-of-spec pathway for attackers to deliver chosen
digital values to microprocessors and embedded systems that
blindly trust the unvalidated integrity of sensor outputs. Our
contributions include (1) modeling the physics of malicious
acoustic interference on MEMS accelerometers, (2) discovering
the circuit-level security flaws that cause the vulnerabilities by
measuring acoustic injection attacks on MEMS accelerometers
as well as systems that employ on these sensors, and (3) two
software-only defenses that mitigate many of the risks to the
integrity of MEMS accelerometer outputs.

We characterize two classes of acoustic injection attacks
with increasing levels of adversarial control: output biasing
and output control. We test these attacks against 20 models
of capacitive MEMS accelerometers from 5 different manu-
facturers. Our experiments find that 75% are vulnerable to
output biasing, and 65% are vulnerable to output control. To
illustrate end-to-end implications, we show how to inject fake
steps into a Fitbit with a $5 speaker. In our self-stimulating
attack, we play a malicious music file from a smartphone’s
speaker to control the on-board MEMS accelerometer trusted
by a local app to pilot a toy RC car. In addition to offering
hardware design suggestions to eliminate the root causes of
insecure amplification and filtering, we introduce two low-
cost software defenses that mitigate output biasing attacks:
randomized sampling and 180◦ out-of-phase sampling. These
software-only approaches mitigate attacks by exploiting the
periodic and predictable nature of the malicious acoustic
interference signal. Our results call into question the wisdom
of allowing microprocessors and embedded systems to blindly
trust that hardware abstractions alone will ensure the integrity
of sensor outputs.

*Corresponding faculty author.

1. Introduction
With the proliferation of motion-driven applications and Microelec-

tromechanical systems (MEMS) technologies, MEMS accelerometers have
been widely used in cyber-physical systems, such as implantable medical
devices, automobiles, avionics, and even critical industrial systems [1], [2],
[3], [4], [5], [6]. These systems deploy layers of software that abstract
away hardware details to collect and analyze data provided by sensors, and

then autonomously react to sensor data in real time. The software assumes
that the underlying hardware is behaving according to specification, and
the common practice is to inherently trust the output from sensors. After
years of effort towards encouraging better security practices in software,
developers are becoming more diligent in hardening software to security
vulnerabilities, but fewer methodologies exist in the sensor hardware do-
main.

It is already known that acoustic interference can cause denial of
service (DoS) attacks against MEMS gyroscopes [7]. Building upon this
previous knowledge, our paper questions current assumptions about the
integrity of sensory data, and specifically explores the data integrity of
MEMS accelerometers with a focus of answering the following questions:
(1) How can an adversary achieve fine grained control over a sensor’s
output? (2) How well will system software cope with untrustworthy mea-
surement of motion? (3) How could sensors be designed differently to
eliminate the integrity issues? What can be done to protect legacy sensors?
Answering these questions is challenging yet critical to securing cyber-
physical systems, and the learned insights can guide future design choices
and methodologies to mitigate security risks introduced by deploying
MEMS sensors in a cyber-physical systems.

MEMS accelerometers have a sensing mass, connected to springs, that
is displaced when the sensor is accelerated. Acoustic waves propagate
through the air, and exhibit forces on physical objects in their path. If
the acoustic frequency is tuned correctly, it can vibrate the accelerometer’s
sensing mass, altering the sensor’s output in a predictable way. To system-
atically analyze the vulnerabilities of MEMS accelerometers, we model the
impact of acoustic interference on the sensor’s entire architecture, including
both the sensing mass and signal conditioning components. We identify two
problematic components in the signal conditioning path of typical MEMS
accelerometers (i.e., insecure low-pass filters and insecure amplifiers) that
lead to two types of adulterated outputs: fluctuating measurements and
constant measurements. These two components not only explain the root
cause of DoS attacks [7] but also enable us to design two additional attack
classes: sensor output biasing and output control that permit increasing
levels of adversarial control over the output of MEMS accelerometers. Of
the 20 models of accelerometers we tested, our experiments show that
75% are vulnerable to output biasing attacks (i.e., insecure low pass filters
enable false fluctuating output measurements under acoustic interference),
and 65% are vulnerable to output control attacks (i.e., insecure amplifiers
enable false constant output measurements under acoustic interference).
At the software system level, our experiments demonstrate the ease of
injecting acoustic interference into an Android smartphone’s accelerometer
to take control of an app that drives an RC car. We also demonstrate a
proof of concept end-to-end acoustic attack by injecting 3,000 steps per
hour into a Fitbit. The results confirm our concerns that system software
does not adequately validate the integrity of sensory data—blindly trusting
the output of sensors by default.

Defending against malicious acoustic interference by applying acoustic
dampening materials to sensors was previously investigated [7], [8]. Other
defense mechanisms exist to thwart sensor-spoofing attacks in scenarios
where the actuator and sensor operate in tandem [9]. Other common
approaches to deal with signal interference include averaging or filtering.
All of these techniques are either impractical (increases packaging size),
not applicable (the sensor must operate with an actuator in a closed loop
system), or insufficient (cannot filter out all interference) in defending



Figure 1. Functional Diagram of Capacitive MEMS Accelerometer
based on [10], [11]. When accelerated, the displacement of the mass
creates an electrical signal due to a change in capacitance. The measured
acceleration, s(t), relates to the displacement of the mass, d(t), according
to Newton’s second law of motion, F = m · a, and Hooke’s law,
F = −ks · d.

against all proposed acoustic injection attacks. Therefore, we offer two
types of defenses: (1) hardware solutions, whereby the acoustic injection
attacks can be eliminated if the MEMS sensors are designed with security in
mind, i.e., each component on the signal conditioning path is chosen with
larger operation parameters, and (2) software solutions for retroactively
protecting vulnerable MEMS accelerometers already deployed in various
devices and systems. We evaluate our software defense mechanisms on
vulnerable MEMS accelerometers showing that output biasing attacks can
be mitigated.

Hardware vulnerabilities in MEMS accelerometers expose attack vec-
tors that can compromise the integrity of the autonomous decision making
path of cyber-physical systems. Our contributions address security concerns
in MEMS accelerometers:

• We model the adversarial physics of acoustic injection attacks on
MEMS accelerometers and identify hardware constraints on the
signal conditioning path that lead to adulterated sensor outputs.

• We design two types of component-level attack classes: output
biasing and output control that exploit independent hardware
design flaws in MEMS accelerometers. We test our attacks on
20 different MEMS accelerometer models and show that 75%
are vulnerable to output biasing attacks, and 65% are vulnerable
to output control attacks. We also demonstrate a proof of concept,
end-to-end, acoustic attack on two vulnerable systems pertaining
to health, wellness, and the Internet of Things.

• We suggest hardware design practices that can increase the
difficulty required to successfully mount an acoustic injection
attack. We propose and measure the effectiveness of two low-
cost software defenses that mitigate acoustic injection attacks:
randomized sampling and 180◦ out-of-phase sampling.

2. Background
In this work, we focus on a specific accelerometer, the capacitive

MEMS accelerometer. Capacitive MEMS accelerometers are traditionally
implemented using a variable capacitive structure [10], [11], as shown in
Figure 1, and are manufactured using MEMS technology: a process by
which micro-mechanical structures are machined into integrated circuit (IC)
packages along with other electrical components. These sensors measure
acceleration using the displacement of a mass connected to springs. This
displacement is translated to a continuous voltage signal. In accordance
with Newton’s second law of motion, F = m · a, and Hooke’s law,
F = −ks · d, the acceleration voltage signal is: a = −ksd

m
.

Additional processing is required for the electrical acceleration signals
to interface with components external to the accelerometer, e.g. micropro-
cessors. Figure 2 illustrates a typical design of the signal conditioning

Figure 2. Typical architecture of the signal conditioning path in a
MEMS accelerometer based on [10]. The change in capacitance measured
by a sensing mass (Fig. 1) is converted to a voltage, amplified, filtered,
and digitized. Without stage D aliasing can occur, enabling output biasing
attacks. Signal clipping at C can introduce a DC component into the
acceleration signal, enabling output control attacks.

path in a MEMS accelerometers [10]. Prior to digitization via an Analog-
to-Digital Converter (ADC, component D in Figure 2), analog signal are
typically amplified (component C in Figure 2) and low-pass filtered (LPF,
component D in Figure 2). Like any circuit components, the amplifier and
ADC have limitations. Amplifiers have upper and lower bounds; when the
input signal exceeds these bounds, signal clipping occurs, and abnormal
acceleration readings are reported. Likewise, the ADC has requirements
that must be met. According to the Nyquist sampling theorem, a mini-
mum sampling rate is required to avoid misinterpreting an analog signal
represented in digital form, also known as signal aliasing. Therefore, it
is common practice to place a LPF prior to an ADC, to filter out high
frequency signal components and enforce the Nyquist requirement.

Both analog and digital accelerometers are available on the market.
Analog accelerometers output the analog signals from the amplifier directly,
while digital sensors typically contain a LPF and ADC. We use an analog
sensor to help us understand how acoustic waves interact with the sensing
mass–spring structure.

3. Threat Model
The goal of an attacker is to hijack the control of the systems that

are driven by acceleration sensor data. In particular, we consider attackers
with the following properties and assumptions.

Attack Scope. With the privacy concerns raised by previous research
[12], [13], [14], [15], [16], sensor data access permissions have been tight-
ened. Thus, we assume that attackers can neither access the digitized sensor
readings directly nor touch the sensors physically. Instead, we assume
that attackers will exploit vulnerabilities by emitting nearby acoustics to
affect the integrity of sensor data, i.e., the analog signals on the signal
conditioning path before being digitized.

Sensor Access. Although we assume attackers do not gain physical
access to a specific targeted device containing a MEMS accelerometer, we
do allow an adversary to gain access to a substantially identical device to
study acoustic attack capabilities. In our attacks, we do not assume the
more powerful adversary such as a lunch-time attack where an adversary
has temporary physical access. However, we assume the attacker is able to
reverse engineer a sample device to extract the exact model of MEMS
accelerometer and profile the accelerometer’s behavior under different
acoustic frequencies and amplitudes. This leads to a key question to the
success of the attacks: to what extent will two instances of the same device
behave in a similar way when they are subjected to the same acoustic
signals?

Speaker Access. We assume that the attacker is able to induce sound
in the vicinity of the victim device, at frequencies in the human audible
to ultrasonic range (2–30 kHz). This can be done by applying the sound
externally, or by playing sounds from speaker in the vicinity of the target
sensors. This might be done via means of remote software exploitation
(e.g., remotely affecting the multimedia software in a phone or a car) or
by a drive-by ditty where a user is tricked into playing malicious music
either by email or a web page with autoplay audio enabled. The attacker
is also able to synthesize any shape, i.e. varying amplitude and phase, of
acoustic signal within the stated frequency range.

4. Attack Modeling & Overview
Acoustic attacks are possible because capacitive MEMS accelerome-

ters use the displacement of a mass as a proxy for measuring acceleration.



Figure 3. Acoustic Interference Disturbs Acceleration Measurements.
True acceleration and acoustic interference can both displace the mass,
creating electrical acceleration signals. The measured acceleration, ŝ(t), is a
linear combination of the true acceleration, s(t), and acoustic acceleration,
sa(t).

Figure 4. Experimental Setup for Evaluating our Model of Electrical
Acceleration Signal Generation. The accelerometer is simultaneously
subjected to both a 70 Hz vibration (true acceleration) and to 2.9 kHz
acoustic noise (to generate acoustic acceleration). Note: a modification
of this setup, removing the vibrating platform, is used for experiments in
Sections 5–8.

Figure 3 shows the MEMS component of a typical accelerometer. When
the sensing mass is displaced, an electrical signal is generated, ŝ(t).
Primarily, the mass is displaced by forces resulting from true acceleration
(i.e. physical motion). However, forces from acoustic pressure waves can
also displace the mass. Because of this, we denote electrical acceleration
signals generated by true acceleration: s(t), and those generated by acoustic
interference: sa(t). Using these representations, we model how acoustic
interference impacts the electrical acceleration signals generated by MEMS
accelerometers, and validate our model. Then, we describe the goal of
acoustic injection attacks and provide an overview of the challenges of
conducting these attacks.

4.1. Modeling Acoustic Effects on Accelerometers
We develop a model for how an electrical acceleration signal, gener-

ated by a capacitive MEMS accelerometer, is distorted by acoustic noise.
We model the measured acceleration as a linear combination of the true
acceleration and acoustic acceleration. Namely, for a true acceleration
signal s(t), and the acoustic acceleration signal sa(t), the measured
acceleration signal ŝ(t) is:

ŝ(t) =s(t) +A1 · sa(t) (1)

A1 is the attenuation of the acoustics in transit to the target device. For an
acoustic frequency Fa, played at amplitude A0, and phase φ, the acoustic
acceleration generated is modeled as sa(t) = A0 · cos(2πFat + φ).
Therefore the measured acceleration is:

ŝ(t) =s(t) +A1A0 · cos(2πFat+ φ) (2)

Evaluating the Model. We evaluate the model, in Equation 2, with the
experimental setup shown in Figure 4. An analog MEMS accelerometer, the

Figure 5. Acceleration Signal Generation Model. A) A 70 Hz sinusoidal
mechanical vibration signal stimulates true acceleration. B) A sinusoidal,
on–off modulated, acoustic interference signal stimulates acoustic acceler-
ation. C) Using the experimental setup in Fig. 4, a MEMS accelerometer
subjected to both mechanical vibrations (true acceleration) and acoustic
interference (acoustic acceleration) outputs an acceleration signal that is a
linear combination of the stimuli signals shown in (A) and (B). Note that
all plots are in the time domain.

ADXL337, was placed on top of a vibration platform vibrating at 70 Hz,
simulating an example of true acceleration on the sensor. An off-the-shelf
tweeter speaker [17] was suspended 10 cm above the sensor to decouple
the sensor from mechanical vibrations emanating from the speaker. The
output of the sensor was sampled by an Arduino microcontroller’s ADC
at a sampling rate of 7 kHz. The samples were logged by a computer
connected to the Arduino. The experimental setup was placed inside an
acoustic isolation chamber to avoid external noise. Outside the chamber, a
commodity audio amplifier [18] amplified an 2.9 kHz acoustic signal that
was supplied to the speaker. To allow visual distinction between the true
acceleration and acoustically stimulated acceleration, the acoustic signal
was on/off modulated at 0.5 Hz.

Results. Figure 5a depicts the 70 Hz sinusoidal physical vibration
signal input to the vibrating platform. Figure 5b shows the sinusoidal, on–
off modulated, acoustic interference signal input to the speaker. Figure 5c
depicts the acceleration signal measured when the acoustic noise is played
in conjunction with the 70 Hz vibration. The measured acceleration is a lin-
ear combination of the true acceleration and artificial acoustic acceleration,
supporting our model.

4.2. Maximizing the Acoustic Disturbance

The goal of an attacker is to maximize the acoustic disturbance on
MEMS accelerometers, or maximize the attenuation coefficient, A1, in
our model. The attenuation coefficient, A1, is a function of acoustic
frequencies. Physics allows the attacker to achieve the maximum acoustic
disturbance by exploiting a mechanical property of a vibrating mass–spring
system — resonance. Vibrating these systems at their resonant frequencies
achieves maximum displacement of the mass, i.e. A1 = 1. To substantially
displace the sensing mass using acoustics, the acoustic frequency must
match the mechanical resonant frequency of the sensor. For the previous
experiment, 2.9 kHz was the resonant frequency of the ADXL337.

4.3. Overview

Based on our model, it seems plausible an attacker may use acoustics to
spoof output measurements from MEMS accelerometers, and tamper with
systems that utilize such sensors. However, there are several challenges:

• Process Variation: The attacker can obtain a different instance
of the exact model of accelerometer to determine its resonant
frequency. Do resonant frequencies of MEMS accelerometers vary
with process variation? Or is the resonant frequency character-
istic of each model similar?

• Controlling the Artificial Acceleration: As our model shows,
acceleration signals resulting from acoustic interference are of



Figure 6. Examples of Signal Distortion from Hardware Deficiencies: A) An ideal MEMS accelerometer filters out all high frequency interference at its
low pass filter (LPF), removing all acoustically generated acceleration signals. B) An accelerometer with an insecure LPF does not fully suppress acoustic
acceleration signals and the digital output measurements are sinusoidally fluctuating. C) An insecure amplifier asymmetrically clips high amplitude acoustic
acceleration signals, introducing a DC component into the amplified signal. The DC component is not removed by the LPF. However, the LPF removes
the high frequency components present in the sharp corners of the clipped signal, resulting in a low-frequency, low-amplitude signal with non-zero DC
offset. The digitized measurements are mostly constant and shifted.

the same frequency as the acoustic waves which created them.
Do the artificial acceleration signals get distorted or removed
by downstream signal conditioning components? Can an attacker
leverage the predictability of acoustic acceleration to achieve fine
grained control over an accelerometer’s output?

• Altering the Behavior of Software through Accelerometers:
Can an attacker influence the behavior of software that takes
input from an accelerometer?

5. Acoustic Attack Building Blocks
Assuming a linear model of acceleration signal generation, this section

predicts the impacts of downstream signal conditioning hardware on the
digital representation of these signals. Our experiments show that because
of security deficiencies in an accelerometer’s signal conditioning hardware,
digitized acoustic acceleration measurements may manifest themselves in
two ways: fluctuating acceleration as if the chip is under high vibration
and constant shifted acceleration as if the chip is on a launching rocket.
These two types of falsified output will serve as the building blocks for
the full-fledged attacks.

5.1. Signal Conditioning Hardware Deficiencies
The two critical hardware components typically included in a MEMS

accelerometer’s signal conditioning path are: an amplifier and a low pass
filter (LPF), components C and D in Figure 2 respectively.

In an ideal case — when the amplifier and LPF work perfectly
— any injected acoustic acceleration signals are removed by the signal
conditioning hardware before being digitized and do not pass through to
end systems, as show in Figure 6a. However, in reality these components
have physical limits. Specifically, each accelerometer has a limit regarding
the maximum amplitude and frequency of acceleration it can measure.
Exceeding these limits distorts their acceleration measurements.

Low Pass Filter. To prevent high frequency noise from contaminating
ADC samples, designers typically include an analog low pass filter (LPF)
before the ADC (component D in Figure 2). An ideal analog LPF filters
out all frequencies above a designated cutoff frequency, Fcutoff, while
passing all frequencies below. To enforce the Nyquist requirment, LPFs
are designed to only pass frequencies which are half that of the ADC’s
sampling rate, Fs, i.e. Fcutoff = 1

2
Fs. However, in practice, it is impossi-

ble to manufacture an LPF that passes all frequencies up to Fcutoff (e.g.,

exactly half the sampling frequency) and completely blocks all frequencies
above Fcutoff. Instead, there is a range of frequencies around Fcutoff
which are attenuated but not completely removed. Acoustic acceleration
signals can be affected by the LPF in one of two ways:

1) Insecure LPF: The accelerometer’s LPF is designed with a cut-
off frequency that is either above, or too close to the resonant
frequency of the sensor. The sinusoidal acoustic acceleration
signal, whose frequency matches the accelerometer’s resonant
frequency, is not completely attenuated by the LPF. It slips
through to the ADC where it is usually under-sampled, as shown
in Figure 6b.

2) Secure LPF: The acoustic acceleration signal’s frequency is
well above the cut-off frequency of the LPF and is completely
attenuated.

Acoustic acceleration signals directly correspond to the acoustic frequency
which generated them (Section 4.1). If the LPF is insecurely designed (1)
the false output acceleration measurements will be sinusoidally fluctuating.

Amplifier. Ideally, the input range of the amplifier is large enough to
handle any signal the sensing mass can produce. In reality, the amplifier
is typically chosen to cope with the maximum specified acceleration. This
exposes an attack surface. Resonant acoustic interference can displace the
sensing mass enough to create a high amplitude acceleration signal that
exceeds the dynamic range of the amplifier. Thus, acoustic acceleration
signals can be potentially be distorted. We classify two types of amplifiers:

1) Insecure Amplifier: Previous research has shown MEMS ac-
celerometers to report false measurements when signal clipping
occurs from exceeding the dynamic range of its amplifier [10],
[19], [20]. The causality stems from the introduction of a DC
component into the output signal of the saturated amplifier, as
illustrated in Figure 6c. This DC component is not removed by
the LPF, however, the sharp clipped edges, i.e. the high frequency
components, are attenuated. Additionally, when the accelerome-
ter’s LPF is securely designed, i.e. the cutoff frequency is much
lower than the resonant frequency, the non-clipped portion of
the acoustic acceleration signal is also attenuated. Given the
construction of the amplifiers [20], clipping can be asymmetrical,
and what slips through to the ADC resembles a low-amplitude
sinusoid with non-zero DC offset. The digital output measure-
ments are mostly constant and non-zero, as reported by [10].



2) Secure Amplifier: When the unamplified acceleration signal is
within the dynamic range of the amplifier, clipping does not
occur. The acceleration signal remains undistorted.

In summary, under resonant acoustic interference the sensor may report
3 types of measurements: true measurements and two types of falsified
measurements. The false sensor measurements are due to insecurities in
hardware components, as shown in Figure 6:

A) True Measurements: The accelerometer’s amplifier tolerates the
high amplitude acceleration signals generated under resonant
acoustic interference, i.e. no signal clipping occurs. The ac-
celerometer’s resonant frequency is much greater than the LPF’s
cut-off frequency. The LPF attenuates high frequency acoustic
acceleration signals.

B) Fluctuating False Measurements: No signal clipping is ob-
served at the amplifier. The LPF DOES NOT completely at-
tenuate high frequency acoustic acceleration signals. Acoustic
acceleration signals are under-sampled by the ADC.

C) Constant Shifted False Measurements: Signal clipping occurs
at the amplifier introducing a non-zero DC component into the
amplified signal. A securely designed LPF passes DC signals
and blocks high frequency signals. A mostly constant, non-zero,
signal is sampled by the ADC.

Recall that acoustic acceleration is only generated when the sound waves
displace the sensing mass, i.e. when the acoustic frequency matches the
resonant frequency of the sensing structure. Only then will fluctuating (2)
and constant (3) false measurements be observed. Conversely, resonant
frequencies can be identified when accelerometers exhibit these phenom-
ena. We test 40 widely used MEMS accelerometers, 2 instances each of
20 different models, to experimentally demonstrate the above behaviors
MEMS accelerometers exhibit when their acoustic resonant frequencies
are played.

5.2. Finding Resonant Frequencies
A sensor at rest should measure constant acceleration of 0 g along

the X and Y axes and 1 g along the Z axis, accounting for gravity.
At a given frequency, if output measurements deviate from normal, i.e.
they are fluctuating or constantly shifted, that frequency is considered a
resonant frequency. By sweeping an acoustic frequency range and acquiring
several acceleration measurements at each frequency, both scenarios can
be observed. Fluctuating measurements are observable by calculating the
standard deviations of multiple samples at each frequency. Constant shifted
measurements are observable by calculating the means of multiple samples
taken at each frequency.

We survey 40 widely used MEMS accelerometers: 2 instances each of
20 different models from 5 different manufacturers, including both analog
and digital sensors, to determine their resonant frequencies. A frequency
where the standard deviation or mean deviates from normal by at least
0.1g, less than 5% of the typical noise margin, is classified a resonant
frequency of that accelerometer model.

5.3. Experimental Setup
Our experimental setup is identical to the setup in Figure 4, absent

the vibrating platform. All 40 MEMS accelerometers (both digital and
analog) were attached to a table. The experiments were conducted in
an acoustic isolation chamber to avoid external acoustic effects. Each
sensor was oriented to experience 0 g along the X and Y axes and 1 g
along the Z axis, due to gravity. Outside the chamber, a commodity audio
amplifier [18] amplified single frequency acoustic signals generated by a
function generator. The amplifier drove an off-the-shelf tweeter speaker [17]
inside the acoustic chamber. The speaker was suspended 10 cm above
the sensor to decouple the sensor from mechanical vibrations emanating
from the speaker. All digital accelerometers were connected via a serial
peripheral interface (SPI) or inter-integrated circuit (I2C) bus to an Arduino
microcontroller running a driver program. Analog accelerometers were
sampled using the Arduino’s ADC. While at rest, each accelerometer was
subjected to single tone acoustic frequencies from 2 kHz–30 kHz, at 50
Hz intervals. At each frequency interval, 256 acceleration readings were
acquired along all possible axes at a sampling rate of at least 400 Hz. As a

baseline, 256 acceleration readings were also acquired without sound. All
acceleration samples were logged by a Python script running on a computer
connected to the Arduino microcontroller.

To determine the resonant frequencies, the speaker was operated near
its maximum amplitude, around 110 dB Sound Pressure Level (SPL). To
ensure that the speaker produced all sounds at similar SPL, we validated
the speaker’s frequency response using a measurement microphone with
a frequency response of 4 Hz–100 kHz [21]. The speaker’s frequency
response was relatively flat (at 110 db SPL) across its entire range, from
1.8 kHz to 30 kHz.

5.4. Results
The means and standard deviations of the 256 raw data samples taken

at each frequency interval are plotted in Figure 7. Of the 20 sensor models
we tested, 15 exhibited standard deviation spikes of at least 0.1g and 13
experienced mean spikes of at least 0.1g. We observe the following from
these results:

1) Both instances of the same sensor model behaved identically.
Therefore, the results of only a single instance of each sensor
model is shown in Figure 7.

2) Resonant frequencies can fall in a range, not only a single
frequency.

3) Several sensors have multiple resonant frequencies.
4) Several sensors have resonant frequencies which result in all

combinations of constant shifted measurements (mean spike)
and/or fluctuating measurements (standard deviation spike).

5) Most sensors that were not affected by acoustic interference are
physically larger than sensors that were affected. This indicates
the MEMS feature size may affect its susceptibility to acoustic
interference.

In summary, acoustic resonant frequencies stimulate MEMS accelerometers
to output false measurements that are either fluctuating or constantly
shifted.

6. Controlling Accelerometer Output
Although the ultimate goal of an adversary is to control a sensor-

driven autonomous system, an intermediate goal is to demonstrate direct
control of the digital time series data output by a sensor. Thus, we ask
the following question: Given a function that represents the desired sensor
output signal, how does one design acoustic interference to mimic said
function? In this section, we show how to utilize the predictability of
both types of false measurements (fluctuating or constant) to control the
time series output of a sensor. Our key contribution is the identification
of two distinct classes of acoustic injection attacks, output biasing and
output control attacks based on controlling fluctuating or constant false
measurements, respectively. Table 1 summarizes our results on the extent
to which sensors are vulnerable to what attack.

6.1. Output Biasing Attack
The output biasing attack utilizes sampling deficiencies at the ADC

and gives an adversary control over the accelerometer’s output for several
seconds. This attack pertains to accelerometers that experience fluctuating
false measurements at their resonant frequencies due to insecure LPFs
(Figure 6b). To perform an output biasing attack, an adversary must
accomplish two goals:

1) Stabilize fluctuating false measurements into constant measure-
ments by shifting the acoustic resonant frequency to induce a
DC alias at the ADC.

2) Reshape the desired output signal by modulating it on top of
the acoustic resonant frequency.

The first step can be accomplished through signal aliasing. The second
step can be realized with signal modulation.

Signal Aliasing. Aliasing is the misinterpretation of an analog signal
caused by digitizing it with an inadequate sampling rate. According to
the Nyquist sampling theorem, an analog signal with maximum frequency
component Fmax must be sampled at a minimum rate of 2 · Fmax to



Figure 7. Effects of Acoustic Interference at Different Frequencies on the Behavior of Accelerometer Output Measurements. Peaks in either standard
deviation (dotted red) or mean (solid blue) indicate the acoustic interference caused the accelerometer to generate false acceleration measurements. Acoustic
frequencies where false measurements are observed are mechanical resonant frequencies of that accelerometer. Peaks in standard deviation indicate the
accelerometer has an insecure LPF (Fig. 6b), resulting in sinusoidally fluctuating false measurements. Peaks in mean indicate the accelerometer has an
insecure amplifier (Fig. 6c), resulting in constant shifted false measurements. The axis of acceleration displayed in each plot is in each respective legend.
The mean plots are normalized to the value of acceleration when the accelerometer was at rest (0 g if along X or Y axis; 1 g if along Z axis).

Figure 8. Examples of Signal Aliasing. A) Sampling a 5 kHz analog signal
at 1.5 kHz results in a 500 Hz signal alias. B) A 1.5 kHz sampling rate
applied to a 4.5 kHz (integer multiple) analog signal yields a constant DC
(0 Hz) alias.

avoid signal aliasing. Figure 8a illustrates aliasing with a 5 kHz sinusoid
and a sampling rate of 1.5 kHz. Reconstructing this signal from the digital
samples results in a 500 Hz aliased signal. When the frequency of the
analog signal is an integer multiple of the sampling frequency, a constant
DC (direct current, 0 Hz) alias is encountered. Figure 8b illustrates this
phenomenon with a 4.5 kHz sinusoid sampled at 1.5 kHz.

Signal Modulation. Signal modulation is used to transmit arbitrary

Figure 9. Examples of Amplitude and Phase Modulation (AM and
PM). A) Amplitude modulation (AM) encodes the information signal in
the envelope of the carrier. AM acoustic interference can only spoof either
all positive or negative acceleration. B) Phase modulation (PM) encodes
the information signal in the phase of the carrier. Unlike AM, PM allows
an attacker to utilize the full range of the carrier, and therefore spoof both
positive and negative acceleration signals.

information signals over another carrier signal. Here we focus on amplitude
and phase modulation, which utilize constant frequency carrier signals.
Assume a sinusoidal carrier signal fc(t) = A · sin(2πtf + φ), with t the
time, f the frequency, and φ a constant phase offset:

1) Amplitude Modulation (AM) consists of varying the amplitude,



TABLE 1. ACCELEROMETER RESONANT FREQUENCIES: UNDER RESONANT ACOUSTIC INTERFERENCE, AN OUTPUT BIASING ATTACK CLASS
INDICATES A SENSOR’S FALSIFIED MEASUREMENTS FLUCTUATE (INSECURE LPF) WHILE AN OUTPUT CONTROL ATTACK CLASS INDICATES

CONSTANT FALSIFIED MEASUREMENTS ARE OBSERVED (INSECURE AMPLIFIER). TWO INSTANCES OF EACH SENSOR WERE TESTED.

Model Type Typical Usage Resonant Frequency (kHz) Amplitude (g)∗ Attack Class‡
X Y Z X Y Z

Bosch - BMA222E Digital Mobile devices, Fitness 5.1–5.35 – 9.4–9.7 1 B – BC
STM - MIS2DH Digital Pacemakers, Neurostims – – 8.7–10.7 1 – – BC
STM - IIS2DH Digital Anti-theft, Industrial – – 8.4–10.8, ... 1.2 – – BC
STM - LIS3DSH Digital Gaming, Fitness 4.4–5.2 4.4–5.6 9.8–10.2 1.6 BC BC BC
STM - LIS344ALH Analog Antitheft, Gaming 2.2–6.6 2.2–5.7 2.2–5.6 0.6 B B B
STM - H3LIS331DL Digital Shock detection – – 11–13, ... 5.2 – – BC
INVN - MPU6050 Digital Mobile devices, Fitness 5.35 – – 0.75 BC – –
INVN - MPU6500 Digital Mobile devices, Fitness 5.1, 20.3 5.1–5.3 – 1.9 BC C –
INVN - ICM20601 Digital Mobile devices, Fitness 3.8, ... 3.3, ... 3.6, ... 1.1 BC BC BC
ADI - ADXL312 Digital Car Alarm, Hill Start Aid 3.2–5.4 2.95–4.75 9.5–10.1 1.3 B B BC
ADI - ADXL337 Analog Fitness, HDDs 2.85–3.1 3.8–4.4 – 0.8 B B –
ADI - ADXL345 Digital Defense, Aerospace 4.4-5.4 3.1–6.8 4.4–4.7 7.9 BC BC B
ADI - ADXL346 Digital Medical, HDDs 4.3–5.1 6.1 4.95, ... 1.75 B B B
ADI - ADXL350 Digital Mobile devices, Medical 2.5–6.3 2.5–4 2.5–6.8 1.8 B B B
ADI - ADXL362 Digital Hearing Aids 4.2–6.5, ... 4.3–6.5, ... 4.5–6.5 1.4 BC BC BC
Murata - SCA610 Analog Automotive – – – – – – –
Murata - SCA820 Digital Automotive 24.3 – – 0.13 C – –
Murata - SCA1000 Digital Automotive – – – – – – –
Murata - SCA2100 Digital Automotive – – – – – – –
Murata - SCA3100 Digital Automotive 7.95 – 8 0.15 C – C
∗ Amplitude is taken as the maximum false output measurement observed. – Experiments found no resonance
‡ B = Output Biasing Attack; C = Output Control Attack (Red Highlight) ... Additional ranges of resonance elided
STM = ST Microelectronics; ADI = Analog Devices; INVN = InvenSense

A, of the carrier signal over time according to the amplitude of
the information signal being transmitted. The amplitude, A, be-
comes a time-domain function, A(t), resulting in the modulated
signal: SAM = A(t) · sin(2πtf + φ). Figure 9a illustrates
amplitude modulating a square wave on top of a sinusoidal
carrier frequency, fc.

2) Phase Modulation (PM) consists of varying the phase, φ, of
the carrier signal over time according to the amplitude of the
information signal being transmitted. The phase φ becomes a
time-domain function, φ(t), resulting in the modulated signal
SPM (t) = A · sin(2πtf + φ(t)). Figure 9b illustrates phase
modulating a square wave on top of a sinusoidal carrier fre-
quency, fc.

Biasing the Output. Here we explain the two steps of the output
biasing attack: 1) stabilize fluctuating false measurements by producing a
DC alias of the acoustic acceleration signal, and 2) modulate the desired
accelerometer output signal over the acoustic resonant frequency. We
demonstrate the output biasing attack by spoofing a MEMS accelerometer
to output a signal spelling “WALNUT”.

Step 1) Converting the fluctuating false measurements into constant
false measurements is accomplished by inducing a DC alias of the accel-
eration signal at the ADC (Figure 8b). A DC alias of a periodic analog
signal is observed if the analog signal’s frequency is an integer multiple
of the sampling frequency, Fsamp. An accelerometer’s ADC sampling
rate, Fsamp, is fixed. The sampling times at discrete intervals k, can be
denoted tk = k · 1

Fsamp . Given the resonant frequencies of a MEMS
accelerometers are often not a single frequency, but a range, an attacker
can find a small frequency deviation fε such that the acoustic frequency
Fa = Fres + fε is still within the resonance zone. Selecting Fa in a way
that it is an integer multiple of the sampling rate, Fsamp, results in a DC
alias, shifting the output of the sensor to a constant value. Therefore, if
Fa = Fres + fε = N · Fsamp where N ∈ {1, 2, 3...}, the measured
acceleration signal is then:

ŝ(tk) =s(tk) +A1 · sa(tk)
=s(tk) +A1A0 · cos(2πFatk + φ)

=s(tk) +A1A0 · cos(2πNk + φ)

=s(tk) +A1A0 · cos(φ)

(3)

Figure 10. Spelling WALNUT: Output Biasing Attack on Sensors with
Inaccurate ADCs. We demonstrate the output biasing attack can control
the X-axis acceleration signals of the A) ADXL350 and B) ADXL345
accelerometers for over a second, spoofing the sensor to spell out “WAL-
NUT”. This attack leverages a security-flaw in the low pass filters of
specific accelerometers. Each accelerometer was positioned with the Z-
axis aligned with gravity, so the X-axis output should have measured 0 g.
Sensors with inaccurate ADCs cause the acoustically stimulated accelera-
tion signal to inconsistently alias to varying almost-DC signals, hence the
WALNUT signal is slightly distorted.

For example, if the resonant frequency and sampling rate are Fres =
3280Hz, Fsamp = 150Hz, one can select the deviation to be fε =
20Hz, such that Fa = 3280 + 20 = 3300 = 22 · Fsamp, to achieve a
DC-aliased time series output.

Step 2) The attacker employs either amplitude or phase modulation
techniques to further shape the output signal of the accelerometer. Regard-
ing output biasing attacks, PM allows an attacker to use the full amplitude
of the carrier frequency to modulate the desired signal, where AM utilizes
only the upper or lower half of the carrier signal (Figure 9). An attacker
must use PM to stimulate an acceleration signal that has both negative and
positive components.



Figure 11. Spelling WALNUT: Output Biasing Attack on Sensors with
Accurate ADCs. We demonstrate the output biasing attack can control
the X-axis acceleration signals output from the A) ADXL337 and B)
LIS344ALH accelerometers for over 5 seconds, spoofing the sensor to spell
out “WALNUT”. This attack leverages a security-flaw in the low pass filters
of specific accelerometers. Each accelerometer was positioned with the Z-
axis aligned with gravity, so the X-axis output should have measured 0 g.
Given an insecure LPF, sensors with accurate ADCs are more vulnerable
than those with inaccurate ADCs because an attacker can more easily guess
the sampling phase when it is stable, hence the WALNUT signal is less
distorted than in Fig. 10

Limitations. Note that an attacker can control the acoustic interference
phase φ in a relative, but not absolute manner. They can increase or decrease
the phase, but always relative to the sampling phase, φsamp, which they do
not control or know. Hand tuning φ to be synchronized with φsamp requires
feedback from the accelerometer under attack. Figure 8b illustrates that the
maximum bias amplitude is reached when samples are taken at the peaks
of the acoustically stimulated acceleration signal. The less φsamp drifts
over time, the more stable the attack. With some sensors, it is possible to
tweak Fa so that the DC-aliased output is maintained for up to 30 seconds.

Evaluation. We evaluated the output biasing attack on all sensors that
yielded fluctuating output measurements at their resonant frequencies (stan-
dard deviation spikes in Figure 7). The same experimental setup shown in
Figure 4 was used, absent the vibrating platform. The acoustic interference
frequency was adjusted around the resonant frequency, specific to each
sensor, until the fluctuating measurements stabilized. Using a function
generator, a piecewise-linear signal spelling “WALNUT” was modulated
over the acoustic resonant frequencies.

Results — Sensors with an Inaccurate ADC. Figure 10 illustrates
the output biasing attack on two digital accelerometers with inaccu-
rate ADCs, the ADXL350 and ADXL345. Spoofed acceleration signals,
spelling “WALNUT”, with peak-to-peak amplitudes of 10 g, were achieved
for 1–2 seconds. These accelerometers, and all digital accelerometers tested,
had inaccurate ADCs that did not take samples at precise time intervals, i.e.
φsamp fluctuates. This limits an attackers ability to achieve control over
a sensor’s output for more than 1–2 seconds. Note that PM was used to
output the “WALNUT” signal on the ADXL350, while AM was used on
the ADXL345. As a result, the spoofed acceleration ranges from -5 g to 5 g
using PM on the ADXL350, while the ADXL345 only sees acceleration
in the positive range, 0 g to 10 g. AM can either spoof all positive or all
negative acceleration, since only the upper or lower envelope of the AM
carrier signal is utilized.

Results — Sensors with an Accurate ADC. Figure 11 illustrates
the output biasing attack on two analog accelerometers interfaced with
accurate ADCs, the ADXL337 and LIS344ALH. Spoofed acceleration
signals spelling “WALNUT”, with peak-to-peak amplitudes of 1 g, were
achieved on both sensors for tens of seconds. These analog accelerometers
were interfaced with accurate ADCs that took samples at precise time
intervals. This made it is easier to maintain a consistent DC-aliased output
signal for several tens of seconds. PM was used to attack both sensors,
simply to yield the highest peak-to-peak amplitude possible. Note how the
spoofed acceleration signals on sensors with accurate ADCs compares to
the spoofed signals on sensors with inaccurate ADCs (Figure 11 vs. 10).

Figure 12. Spelling WALNUT: Output Control Attack. We demonstrate
the output control attack achieving full indefinite control over the X-axis
acceleration signals of the a) MIS2DSH and b) MPU6500 accelerometers,
spoofing the sensor to spell out “WALNUT”. Each accelerometer was
positioned with the Z axis aligned with gravity, so the X axis output should
have measured 0 g. This attack leverages a security-flaw in the amplifier
of specific accelerometers. The attacker does not need to know anything
about the sampling regime of the ADC, hence the WALNUT signal is the
least distorted compared with Figs. 10 and 11.

TABLE 2. ACCELEROMETER RESONANT FREQUENCIES INSIDE
SMARTPHONES. THE ACCELEROMETER’S RESONANT FREQUENCY

SLIGHTLY SHIFTS WHEN IS MOUNTED INSIDE A PHONE.

Device Model Resonant Frequency (kHz) Amplitude (g)X Y Z
MPU6500

Sensor Only 5.1, 20.3 5.1–5.3 None 1.9

Galaxy S5 5.25–5.55 5.35 None 2
Galaxy Note 3 5.3–5.4 None None 0.4

6.2. Output Control Attack
The output control attack gives an adversary indefinite full control of

an accelerometer’s output. This attack is applicable to accelerometers that
exhibit constant shifted false measurements at their resonant frequencies
due to insecure amplifiers (Figure 6c). No signal aliasing at the ADC is
needed, since the false output measurements are already stable and constant.
This allows an adversary to control the acceleration output indefinitely. To
perform an output control attack, an adversary need accomplish one goal:
reshape the desired sensor output signal by modulating it over the resonant
frequency.

Controlling the Output. Achieving fine grain control over sensor out-
put requires using amplitude modulation. Amplitude modulation modulates
the amplitude of clipping at the amplifier, which is effectively demodulated
by the LPF. Regardless of the ADC’s sampling regime, an attacker has full
control over sensor output. With PM, the amplitude of clipping does not
change. Hence, AM yields a more effective attack.

Evaluation. We evaluated the output control attack on all sensors
that demonstrated constant false output measurements (mean spikes in
Figure 7). The same experimental setup shown in Figure 4 was used,
absent the vibrating platform. A signal spelling “WALNUT” was amplitude
modulated over each sensor’s acoustic resonant frequency.

Results. Figure 12 illustrates the chosen output attack on two ac-
celerometers tested, the MIS2DSH and MPU6500. Spoofed acceleration
signals, spelling “WALNUT” with peak-to-peak amplitudes of up to 1 g
were achieved on both sensors. Note how stable the acoustically stimulated
output signal is compared with the signals spoofed by output biasing attacks
in Figures 10 and 11.

7. Attacking Embedded Devices
The ultimate goal of an attacker is to leverage accelerometer hardware

vulnerabilities to stealthily control software running on embedded devices.



Embedded software applications often assume trustworthy input from ac-
celerometers to make automated or closed-loop decisions. We demonstrate
two system-level attacks using acoustic injection: (1) controlling a smart-
phone application that drives an RC car by playing a malicious music file
on the phone, and (2) controlling a Fitbit fitness tracker to earn financial
rewards by playing tones from an external speaker. Unlike our previous
experiments, there is no external speaker for the smartphone attack. Instead,
our attack uses the built-in speaker in the smartphone to play a music file
that hijacks control of the accelerometer’s output. We refer to this special
subclass of vulnerability as a self-stimulation attack when a vulnerable
system overtly co-locates a transmitter near a sensor by design—making
standoff distances effectively zero meters.

7.1. Packaging Effects on Resonant Frequencies
Attacking an accelerometer buried in an embedded device raises an

important question: Does the packaging change the acoustic resonant
frequency at all? Here we demonstrate that packaging an accelerome-
ter inside an embedded device does only slightly alter its resonant fre-
quencies. We analyzed two different smartphones with the same MEMS
accelerometer model (MPU6500), the Samsung Galaxy S5 and Galaxy
Note 3. We evaluated the acoustic vulnerabilities of accelerometers inside
the phones using the same experimental setup we used for evaluating
sensors (Figure 4), minus the vibrating platform. Each phone reported real
time acceleration data via an Android application (Wireless IMU) which
transmitted the data over a UDP stream to a nearby computer, rather than
through an Arduino microcontroller. Table 2 summarizes the results of our
experiments, and compares our results with the results from attacking the
sensor alone. Evidently, the acoustic resonant frequency of an accelerometer
mostly stands apart from its packaging, though the amplitude of acoustic
acceleration can be attenuated by packaging.

7.2. Smartphone Controlled RC Car
To demonstrate the self-stimulation attack on the smartphone we

attempted to hijack control of a smartphone application that makes use of
the phone’s accelerometer to pilot a wireless RC car. Numerous inexpensive
RC cars are controlled with smartphone applications. These applications
allow users to tilt the phone in the direction they want to steer the car. This
functionality employs the phone’s MEMS accelerometer. The accelerometer
measures the phone’s physical orientation in relation to gravity. The appli-
cation translates this information into digital commands that are sent to the
car via WiFi or Bluetooth. The goal was to use the phone’s speaker to spoof
acceleration measurements that would trigger the RC car application to send
commands to the car — commanding the car to go forwards, backwards,
and to stop. This notion of an application (playing music) contaminating the
behavior of another application (steering an RC car) running simultaneously
violates basic Android data and privilege separation principles. This attack
demonstrates a unique write side channel.

Evaluation. The experimental setup is shown in Figure 13. An RC
car, Samsung Galaxy S5 smartphone, and computer were all placed on
the same local area network. The Samsung Galaxy S5 phone contains an
MPU6500 accelerometer, a sensor that is vulnerable to the output control
attack. The phone ran three Android applications from the Google Play
store: 1) RC car controlling application (i-Spy Toys), 2) accelerometer
monitoring application (Wireless IMU), and 3) an application that played
audio files (WavePad Audio Editor). The car controlling application polled
the orientation state of the accelerometer and sent digital commands to the
car over a TCP connection. The accelerometer monitoring application sent
UDP packets with accelerometer measurements to the computer in real
time. The audio application played a malicious WAV file that had been
pre-loaded on the phone.

The RC car application monitors and reacts to X-axis acceleration.
When the user tilts the phone flat or upright, i.e. the X-axis acceleration
is 0 g or 1 g respectively, the application sends forward or backwards
commands to the car. When the phone is approximately at a 30◦ angle,
the X-axis acceleration is 0.3 g and the application sends stop commands
to the car.

Results. The phone was placed in an upright position (X-axis aligned
with gravity). The malicious WAV file contained an AM acoustic inter-
ference signal designed to drive the car forward and backward, shown in
Figure 14a. The acoustic interference was played over the phone’s speaker.

Figure 13. Smartphone Attacking its own Accelerometer to Control
an RC Car. An Android phone runs an application that controls an RC
car based on the phones orientation, measured by its internal MEMS
accelerometer. Simultaneously, a malicious audio file is playing over the
phone’s speaker, mounting an output control attack on the phone’s ac-
celerometer. The RC car is essentially piloted by the audio file.

Figure 14. Controlling an RC Car with an Output Control Attack
on a Samsung Galaxy S5. A smartphone controlled RC car reacts to
commands its given over WiFi. The car behaves according to the phone’s X-
axis orientation towards gravity. The amplitude modulated acoustic signal
in (A) is used to mount an output control attack that controls the phone’s
accelerometer output. The false acceleration measurements (B) trick the
application to send forward/stop/backward commands to the RC car.

Figure 14b shows the X-axis acceleration spoofed by the malicious audio
file, and how the RC car reacted.

7.3. Free Fitbit Rewards

Several companies, including Walgreens and Higi, incentivize people
to exercise by offering rewards programs that tether to their personal fitness
tracking wristbands and monitor their daily physical activity. These fitness
tracking wristbands use accelerometer driven pedometers [1] to count the
number of steps the user takes over the course of a day. Rather than ex-
ploiting software vulnerabilities to spoof step counts [22], we demonstrate
how one can spoof approximately 3,000 steps an hour on a Fitbit One [23]
fitness tracker using acoustic interference and earn free rewards.

We opened a Higi.com account and tethered a Fitbit One device
to the account. Using a similar setup as shown in Figure 4, absent the
vibrating platform, acoustic interference at the resonant frequency of the
Fitbit’s accelerometer was played for approximately 40 minutes. No signal
aliasing or modulation was needed as simply spoofing fluctuating false
measurements was sufficient to register thousands of false steps. We were
able to register 2,100 steps in that time and earn 21 rewards points on
Higi.com without walking a single step. Due to ethical considerations, we
have not claimed any of these rewards and have notified the respective
manufactures about such flaws.



TABLE 3. EFFECTIVENESS OF DEFENSE MECHANISMS IN
THWARTING THE ACOUSTIC ATTACKS.

Defense Mechanism Output Biasing Output Control
Secure LPF & Amplifier 3 3
Acoustic Dampening Materials 3 3
Randomized Sampling 3
180o Out-of-Phase Sampling 3

8. Defending Against Acoustic Attacks
Acoustic attacks exploit security vulnerabilities in the hardware com-

ponents of MEMS accelerometers. Going forward, building secure sensors
may eradicate this acoustic threat vector. However, vulnerable MEMS
accelerometers are currently already deployed in many devices and systems.
In this section we provide both hardware design suggestions and software
defense mechanisms to increase the difficulty of mounting acoustic injection
attacks on MEMS accelerometers. Table 3 summarizes the effectiveness of
each suggestion and mechanism in thwarting each proposed attack. It is
important to note that though some of the defenses we propose may not
completely eradicate acoustic vulnerabilities, they will certainly increase
the exploitation difficulty for the adversary.

8.1. Hardware Design Suggestions
Both kinds of acoustic injection attacks, output biasing and output

control, exploit hardware deficiencies in the signal conditioning compo-
nents. Specifically the LPF, amplifier, and mechanical sensing structures
of MEMS accelerometers are negatively impacted by resonant acoustic
interference (Figure 6). Designing these components to better tolerate
acoustic interference would make MEMS accelerometers resilient to our
attacks.

Secure Low Pass Filter. Output biasing attacks leverage signal alias-
ing at the ADC to control the accelerometer’s output, a capability that
should be suppressed by low pass filtering the analog acceleration signal
prior to digitization. Low pass filters are designed to pass low frequency
signals while blocking high frequency signals. They have three important
frequency ranges: 1) pass band, 2) transition band, and 3) stop band.
The pass band does not block any frequencies in its range. Frequencies
in the transition band are increasingly attenuated, and frequencies in the
stop band are completely blocked. The frequency that marks the transition
point between the pass band and transition band is known as the cutoff
frequency, Fcutoff.

A properly designed analog LPF should have a cut-off frequency
of less than half of the ADC sampling rate, i.e. Fcutoff =

Fsamp

2
, to

prevent signal aliasing. The sampling rates of most accelerometers we
analyzed were less than 1.5 kHz, implying the maximum frequency accel-
eration signal they could accurately measure was less than 750 Hz. Most
accelerometers also exhibited resonant frequencies greater than 2.5 kHz.
Three scenarios explain why the LPFs we encountered in the sensors we
analyzed do not always filter out high frequency acoustic interference:

1) No LPF Exists: The designers did not include an LPF in the
signal conditioning path at all. This is unlikely.

2) Signal Clipping at the Amplifier: The amplifier was not se-
curely designed to account for high amplitude acoustic noise,
causing signal clipping to be observable. Signal clipping intro-
duces a DC component into the output signal which slips through
the LPF.

3) Resonant Frequency Lies in the LPF’s Transition Band: the
resonant frequency of the accelerometer lies within the LPF’s
transition band. As a result, the LPF does not fully attenuate the
acoustic interference.

The solution to scenario 1 (though this scenario is unlikely) is
straightforward: add an LPF. The solution to scenario 2 is discussed in
the following section. Lastly, scenario 3 is the most difficult to address.
Designing an LPF that has a transition band that does not overlap the
accelerometer’s resonant frequency can be accomplished in three ways: 1)
lower the cutoff frequency, 2) narrow the transition band, or 3) design the
mass-spring sensing structure to exhibit a higher resonant frequency.

Figure 15. Example of Randomized and 180◦ Out-of-Phase Sampling:
A) Sampling at random times within the resonant frequency period pro-
hibits an attacker’s ability to control sensor outputs with DC aliasing. B)
Taking 2 samples 180◦ out-of-phase, with respect to the resonant frequency,
will yield samples symmetric around the true acceleration value. Averaging
the samples, in both mechanisms, cancels out the disturbance.

All three have different limitations. The first lowers the frequency limit
of vibrations an accelerometer can measure. The second requires adding
many extra components, eventually for little to no added benefit. Finally, the
last is possible but requires stiffening the spring and losing sensitivity [24].

Secure Amplifier. Output control attacks leverage signal clipping at
the amplifier to introduce a DC component into the acceleration signal
which slips through any subsequent LPF. This is prevented in two ways:

1) More Tolerant Amplifier: Design an amplifier that can accept
the large amplitude inputs that are generated under acoustic
interference.

2) Pre-filter Amplifier Inputs: Filter acoustic resonant frequencies
prior to the amplifier with another LPF or band-stop filter.

The first solution is potentially limited by size, power, and cost. The
larger the amplifier circuitry, the more power and chip area it consumes.
These increase sensor cost and decrease deployability. The second solution
is limited by the cost of adding more components, but may not increase
power consumption. The third, which some designs do employ [10],
involves suppressing a sensor’s resonant frequencies prior to amplification
and may increase chip area and cost.

Acoustic Dampening Materials. Attenuating acoustic waves before
they penetrate sensor packaging can prevent acoustic acceleration signals
from being generated at all. Surrounding accelerometer ICs with acoustic
dampening materials, such as synthetic foam [7], [8], can shield it from
acoustic noise. The limitation here is size: acoustic dampening foam takes
up space, a scarce resource in most embedded systems.

8.2. Software Defense Mechanisms
Redesigning hardware to tolerate acoustic interference is not an op-

tion for accelerometers already deployed in the field. For a subset of
these sensors we provide two different defense mechanisms that can be
implemented in software and deployed as firmware updates: randomized
sampling and 180◦ out-of-phase sampling. These solutions are only capable
of preventing output biasing attacks, where acoustic acceleration signals
have not been distorted by amplifier clipping. They work by eliminating
an attacker’s ability to achieve a DC signal alias at the ADC. Each defense
mechanism takes advantage of the requirement that only acoustic resonant
frequencies can displace the sensing mass, and that these frequencies are
known at design time. For that reason, we consider only sensors that exhibit
false fluctuating measurements under acoustic interference. Both solutions
assume the device has control over the sampling regimes of its sensors,
i.e. they employ analog sensors and software controlled ADCs (several
microcontrollers allow software to trigger the ADC to take a sample,
e.g. [25]).

Randomized Sampling. Randomized sampling eliminates the pre-
dictability of an ADC’s sampling regime. Instead of setting an ADC to sam-
ple at a fixed interval, randomized sampling adds a random amount of delay



Figure 16. Randomized Sampling: Both periodic (red dotted line) and
randomized sampling (solid blue line) are employed on ADCs interfaced
to two analog accelerometers, the ADXL337 and LIS344ALH. Simultane-
ously, output biasing attacks were crafted on both sensors to induce artificial
square wave output signals. The bogus square wave acceleration signals are
attenuated by deploying randomized sampling.

to the beginning of each sampling period. This prevents an attacker from
tuning the resonant frequency to induce a DC alias, i.e. step 1 (stabilize) of
the output biasing attack (Section 6.1). Randomized sampling intentionally
amplifies the effect of having an inaccurate ADC. Computing a moving
average over several samples then smooths the fluctuating measurements.

An adversary performing an output biasing attack stabilizes the fluc-
tuating false acceleration measurements by tuning the acoustic frequency
such that it is an integer multiple of the sampling frequency (Equation 3).
Defeating this attack, we add random delay, tdelay, to the sampling time,
tk , s.t. tdelay is uniformly distributed in [0, 1

Fres ]. Recall that the acoustic
frequency Fa is close to the resonant frequency: Fa ≈ Fres. Therefore,
setting the sampling times t∗k = tk + tdelay results in a symmetrical
distribution of ŝ(tk) over a full cycle of acoustically stimulated acceleration
measurements, cos(2πFatk + φ).

Figure 15a illustrates the concept of randomized sampling. The re-
sulting distribution of ŝ(tk) is not uniformly distributed over [s(tk) −
sa(tk), s(tk) + sa(tk)], but rather it is symmetric around the value of
true acceleration, s(tk). Hence, computing a moving average of several
samples filters out periodic acoustic acceleration but not true acceleration.
Randomized sampling does not destroy valid periodic acceleration signals,
i.e. vibrations within [0,

Fsamp
2

], because in most cases, the maximum
frequency of true acceleration is much smaller than the resonant frequency.

Some MEMS accelerometers exhibit multiple resonant frequencies.
For these sensors, the random delay added to the sampling time, tdelay,
should be uniformly distributed in [0, 1

Flcm
], where Flcm is the least

common multiple of all resonant frequencies exhibited by the device.
No matter the resonant frequency utilized by the attacker, ŝ(tk) remains
symmetrically distributed around the true acceleration value.

180◦ Out-of-Phase Sampling. One hundred eighty degree out-of-
phase sampling attenuates acceleration signals with frequencies around a
given sensor’s resonant frequency. It acts as a simple band-stop filter in
software. An ADC performing out-of-phase sampling takes two samples at
a 180◦ phase delay with respect to the resonant frequency Fres. Namely,
two samples are taken at times tk, tk + tdelay where tdelay = 1

2·Fres .
The true acceleration measurement value is then computed by taking the
average: sk = 1

2
(s(tk) + s(tdelay)). Figure 15b illustrates the out-of-

phase sampling concept.
Following step 1 (stabilize) of the output biasing attack (Section 6.1),

an adversary chooses an acoustic frequency approximately equal to the
resonant frequency, Fa ≈ Fres. Out-of-phase sampling is analogous to
a notch filter around the resonant frequency range. Given an acoustic
acceleration signal, sa(tk):

sa(tk + tdelay) =A0A1cos(2πFa(tk + tdelay) + φ)

=A0A1cos(2πFatk + π + φ)

=− sa(tk)
(4)

Figure 17. 180◦ Out-of-Phase Sampling: Both periodic (red dotted line)
and 180◦ out-of-phase (solid blue line) sampling are employed on ADCs
interfaced to two analog accelerometers, the ADXL337 and LIS344ALH.
Simultaneously, output biasing attacks were crafted on both sensors to
induce artificial square wave output signals. The bogus square wave ac-
celeration signal is attenuated by deploying out-of-phase sampling.

Stated otherwise, the value of two samples of acoustically stimulated
acceleration taken 180◦ out-of-phase are opposites. Assuming the max-
imum frequency of the true acceleration signal, s(t), is much smaller
than the resonant frequency, then s(t) will be the same across two out-
of-phase samples while the acoustically stimulated acceleration, sa(t), is
not. Namely, s(tk) ≈ s(tk + tdelay) and sa(tk) = −sa(tk + tdelay).
Averaging the out-of-phase samples yields:

1

2
(ŝ(tk) + ŝ(tk + tdelay)) ≈

1

2
(2s(tk) + 0) = s(tk) (5)

The measured acceleration signal after averaging is approximately the same
as the true acceleration signal s(t).

Implementation & Evaluation. Both sampling mechanisms assume
software can control the sampling regimes of the sensors, i.e. an analog
sensor sampled by software controlled ADCs. We demonstrate randomized
sampling and out-of-phase sampling on two analog accelerometers, the
ADXL337 and LIS344ALH, interfaced to ADCs embedded in the Arduino
microcontroller. We use the same experimental setup described in Figure 4,
without the vibrating platform. For randomized sampling, the ADC was
programmed to add a random delay, tdelay, at the beginning of each
sampling cycle according to the resonant frequency of the respective
accelerometer. Conversely, for out-of-phase sampling the ADC was config-
ured to take two samples at exactly 1/Fres seconds apart. Output biasing
attacks were performed to create bogus square wave acceleration signals on
both sensors. Figures 16 and 17 show the effectiveness of random and out-
of-phase sampling, respectively, vs. normal periodic sampling at filtering
out the maliciously spoofed square waves.

9. Related Work
Attacking and defending systems at the analog sensor and actuator

layer can be classified as analog cybersecurity. Acoustic injection attacks
represent one type of attack in the analog cybersecurity quiver. Analog
cybersecurity owes its heritage to research in the side channel analysis and
fault injection attack communities that grew from research on smartcard
security in the 1990s [26]. Most recently, Shoukry et al. [9] develop a
sensor authentication scheme, called PyCRA, to thwart attacks on sensor–
actuator systems. They categorize analog cybersecurity attacks into sensor
spoofing and eavesdropping attacks, and offer ways to identify spoofed
signals. From there they are able to subtract spoofed signals from the
perceived signals to recover the original sensor measurements. As Shin
et al. point out [27], PyCRA makes assumptions about an adversary’s
capabilities and can be defeated when these assumptions are violated. In
contrast to PyCRA, we offer techniques to eliminate the attacker’s ability
to spoof sensor measurements to begin with.

Spoofing Analog Sensors. Earlier sensor spoofing attacks focus on
the system level, manipulating a system’s behavior by altering a sensor’s



environmental perception. In the unmanned aerial vehicle (UAV) space,
Son et al. [7] demonstrate intentional acoustic interference on MEMS
gyroscopes in drones, causing the them to crash. Davidson et al. [28]
spoof optical flow sensors on UAVs with intense light to control their
lateral motion. Regarding the medical device domain, Park et al. [29]
utilize intentional infrared interference to trigger medical infusion pumps
to over deliver medicine to patients. Foo Kune et al. [30] show how
carefully crafted electromagnetic interference (EMI) can be injected into
signal digitization circuitry inside implantable medical devices to control
the delivery of pacing and defibrillation shocks. In the automotive area,
Shoukry et al. [31] demonstrate how to deliver false readings to anti-lock
braking systems (ABS) via the magnetic wheel speed sensors using EMI.
Lastly, Yan et al. spoof various Tesla autopilot subsystems with intentional
ultrasonic and EMI interference to cause safety critical malfunctions.
Rather than separately analyzing individual systems that utilize sensors for
analog vulnerabilities, our work takes a fundamental approach: exploring
the analog vulnerabilities of the sensors themselves for the purpose of
defending the systems that employ them.

Intentional and Unintentional Interference. Engineering researchers
undergo great efforts to design robust systems that are resilient to inter-
ference, including electromagnetic and acoustic. Boneh et al. demonstrate
how computational faults induced by interference can break cryptographic
protocols [26]. Consequently, understanding the potential threats of interfer-
ence on systems, devices, and sensors is vital. Giri et al. classify intentional
EMI threats into categories of frequency range, level of sophistication, and
effects on targeted systems [32]. Delsing et al. explore the vulnerability
of sensor networks to intentional EMI [33]. The effects of unintentional
and intentional EMI on implantable medical devices have also been inves-
tigated [30], [34], [35]. Dean et al. and Castro et al. characterize the effects
of high power acoustic noise on MEMS gyroscopes [36], [37], [38], and
Soobramaney and Castro et al. develop mechanisms to mitigate acoustic
interference on MEMS gyroscopes using acoustic dampening materials [8],
[38]. Soobramaney also demonstrates a defense mechanism that utilizes a
modified gyroscope to respond to only acoustic interference to cancel the
interference signal from the true signal [8]. To the best of our knowledge,
we are the first to demonstrate how intentional acoustic interference on
MEMS accelerometers can be leveraged to control their output.

Information Leakage. Information leakage from physical properties,
or side-channels, of computing systems are also relevant to analog cy-
bersecurity. Recent studies show that gyroscopes and accelerometers can
leak personal information [12], [13], [14], [15], [16]. Michalevsky et al.
show that gyroscopes in smart-phones can be used as a microphone to
eavesdrop on conversations [16]. Marquardt et al. demonstrate that smart-
phone accelerometers leak enough information to infer keystrokes from
a nearby keyboard [12]. Similarly, Owusu and Aviv show smart-phone
accelerometer information leakage can be leveraged to infer user touch-
screen gestures and key presses to leak passwords and PIN codes to unlock
phones [14], [15]. Dey et al. found that process variation in accelerometers
yields a unique fingerprint that can uniquely identify a device [13]. These
efforts are a reminder that physical attacks on analog sensors render
securing data integrity, authentication, and confidentiality between sensors
and microprocessors challenging.

10. Conclusion
Because MEMS accelerometers use displacement as a proxy for mea-

suring acceleration, malicious acoustic interference at resonant frequencies
can damage the integrity of a sensor’s digital outputs. Our work models the
physics of acoustic injection attacks on MEMS accelerometers, validated by
measuring the outputs of sensors subjected to our acoustic interference. Our
experiments show that subtle hardware security flaws in amplification and
filtering circuits of the signal conditioning path represent the fundamental
root causes of the vulnerabilities. These pervasive security flaws lead to two
unusual classes of sensor vulnerabilities: output biasing and output control.
In our acoustic tests of 20 accelerometer models from 5 manufacturers, we
found 75% are vulnerable to output biasing attacks and 65% vulnerable
to output control attacks. We also demonstrate proof-of-concept end-to-
end attacks with physical consequences. To illustrate implications to data
integrity, we show how to inject fake steps into a Fitbit fitness tracker to
earn financial rewards. To illustrate implications to control systems, we
play malicious music files from a smartphone’s speaker to control an app
that drives an RC car. We refer to this special subclass of vulnerability

as a self-stimulating attack because the transmitter and receiver are co-
located on the same device. To reduce the risks of attacks on the integrity
of MEMS accelerometers, we recommend hardware design suggestions to
increase the security of amplifiers and filters and mitigate acoustic attacks
on the next generation of sensors. For sensors already deployed in the
field, we offer two low-cost software defense mechanisms to prevent output
biasing attacks: randomized sampling and 180◦ out-of-phase sampling. Our
software defense mechanisms can protect all accelerometers vulnerable to
output biasing attacks, but not output control attacks.
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[11] M. Andrejašic, “Mems accelerometers,” University of Ljubljana,
Tech. Rep., 2008, http://mafija.fmf.uni-lj.si/seminar/files/2007 2008/
MEMS accelerometers-koncna.pdf.

[12] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iPhone:
decoding vibrations from nearby keyboards using mobile phone
accelerometers,” in Proceedings of the 18th ACM conference on
Computer and Communications Security, 2011.

[13] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accel-
Print: Imperfections of accelerometers make smartphones trackable,”
in NDSS, 2014.



[14] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
password inference using accelerometers on smartphones,” in Pro-
ceedings of the Twelfth Workshop on Mobile Computing Systems &
Applications, 2012.

[15] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in Proceedings of the
28th Annual Computer Security Applications Conference, 2012.

[16] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing
speech from gyroscope signals,” in Proceedings of the 23rd USENIX
Security Symposium, 2014.

[17] Pyramid Car Audio, “Tw28 bullet horn
tweeter,” http://www.pyramidcaraudio.com/sku/TW28/
300-Watt-Aluminum-Bullet-Horn-in-Enclosure-wSwivel-Housing.

[18] Yamaha Corporation, “R-S201 Receiver User Manual.”

[19] J. J. Rychcik, J. E. Vandemeer, and M. L. Shaw, “Characterizing input
saturation in low-g accelerometers,” 2002, http://archives.sensorsmag.
com/articles/0502/68/main.shtml#ref1.

[20] Analog Devices, “Avoiding op amp instability problems in
single-supply applications,” Analog Devices, Tech. Rep., 2001,
http://www.analog.com/media/en/analog-dialogue/volume-35/
number-1/articles/avoiding-op-amp-instability-problems.pdf.

[21] National Instruments Inc., “G.R.A.S. 46BE 1/4” CCP Free-field
Standard Microphone Set,” http://www.ni.com/pdf/manuals/G.R.A.S.

46BE.pdf.

[22] M. Rahman, B. Carbunar, and M. Banik, “Fit and vulnerable: Attacks
and defenses for a health monitoring device,” arXiv 1304.5672, 2013.

[23] FitBit, “FitBit One,” https://www.fitbit.com/one.

[24] J. Voldman, “Case study: A capacitive accelerometer,” in Open-
CourseWare, 2013.

[25] Texas Instruments, “Tiva TM4C129XNCZAD microcontroller data
sheet (Rev. B),” June 2014, http://www.ti.com/lit/ds/symlink/
tm4c129xnczad.pdf.

[26] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in EUROCRYPT, 1997.

[27] H. Shin, Y. Son, Y. Park, Y. Kwon, and Y. Kim, “Sampling race:
Bypassing timing-based analog active sensor spoofing detection on
analog-digital systems,” in 10th USENIX Workshop on Offensive
Technologies (WOOT 16), 2016.

[28] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Con-
trolling UAVs with sensor input spoofing attacks,” in 10th USENIX
Workshop on Offensive Technologies (WOOT 16), 2016.

[29] Y. Park, Y. Son, H. Shin, D. Kim, and Y. Kim, “This ain’t your dose:
Sensor spoofing attack on medical infusion pump,” in 10th USENIX
Workshop on Offensive Technologies (WOOT 16), 2016.

[30] D. Foo Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu,
Y. Kim, and W. Xu, “Ghost talk: Mitigating EMI signal injection
attacks against analog sensors,” in IEEE Symposium on Security and
Privacy, 2013.

[31] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in International
Workshop on Cryptographic Hardware and Embedded Systems, 2013.

[32] D. Giri and F. Tesche, “Classification of intentional electromagnetic
environments,” IEEE Transactions on Electromagnetic Compatibility,
2004.

[33] J. Delsing, J. Ekman, J. Johansson, S. Sundberg, M. Bäckström, and
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